Inhibiting Histone Deacetylase 2 (HDAC2) Promotes Functional Recovery From Stroke

نویسندگان

  • Ying Tang
  • Yu‐Hui Lin
  • Huan‐Yu Ni
  • Jian Dong
  • Hong‐Jin Yuan
  • Yu Zhang
  • Hai‐Ying Liang
  • Meng‐Cheng Yao
  • Qi‐Gang Zhou
  • Hai‐Yin Wu
  • Lei Chang
  • Chun‐Xia Luo
  • Dong‐Ya Zhu
چکیده

BACKGROUND Stroke is a leading cause of long-term disability worldwide. However, current therapies that promote functional recovery from stroke are limited to physical rehabilitation. No pharmacological therapy is available. Thus, understanding the role of histone deacetylase 2 (HDAC2) in the pathophysiological process of stroke-induced functional loss may provide a novel strategy for stroke recovery. METHODS AND RESULTS Focal stroke was induced by photothrombosis. LV-HDAC2-shRNA-GFP, LV-GFP, Ad-HDAC2-Flag, or Ad-inactive-HDAC2-Flag was microinjected into the peri-infarct area immediately after stroke. HDAC inhibitors were microinjected into the peri-infarct area 4 to 10 days after stroke. Grid-walking task and cylinder task were conducted to assess motor function. Golgi-Cox staining, chromatin immunoprecipitation, and electrophysiology were used to reveal the mechanisms underlying stroke recovery. Knockdown or knockout of HDAC2 promoted stroke recovery, whereas overexpression of HDAC2 worsened stroke-induced functional impairment. More importantly, trichostatin A, a pan-HDAC inhibitor, promoted functional recovery from stroke in WT mice when used in the delayed phase, but it was ineffective in Hdac2 conditional knockout (Hdac2 CKO) mice. Treatment with suberoylanilide hydroxamic acid, a selective HDAC1 and HDAC2 inhibitor, in the delayed phase of stroke produced sustained functional recovery in mice via epigenetically enhancing neuroplasticity of surviving neurons in the peri-infarct zone. CONCLUSIONS Our novel findings provide evidence that HDAC2 is a crucial target for functional recovery from stroke. As there are clinically available HDAC inhibitors, our findings could be directly translated into clinical research of stroke.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FKBP3 Promotes Proliferation of Non-Small Cell Lung Cancer Cells through Regulating Sp1/HDAC2/p27

FKBP3 is a member of FK506-binding proteins (FKBPs). Little is known about the expression and functional role(s) of FKBP3 in non-small cell lung cancer (NSCLC). In the present study, we demonstrated up-regulation of FKBP3 expression, both at mRNA and protein levels, in NSCLC samples which closely correlated with poor survival in NSCLC patients. In vitro and in vivo experiments revealed that FKB...

متن کامل

Neuronal Nitric Oxide Synthase in Neural Stem Cells Induces Neuronal Fate Commitment via the Inhibition of Histone Deacetylase 2

Active adult neurogenesis produces new functional neurons, which replace the lost ones and contribute to brain repair. Promoting neurogenesis may offer a therapeutic strategy for human diseases associated with neurodegeneration. Here, we report that endogenous neuronal nitric oxide synthase (nNOS) for neural stem cells (NSCs) or progenitors positively regulates neurogenesis. nNOS repression exh...

متن کامل

An HDAC2-TET1 switch at distinct chromatin regions significantly promotes the maturation of pre-iPS to iPS cells

The maturation of induced pluripotent stem cells (iPS) is one of the limiting steps of somatic cell reprogramming, but the underlying mechanism is largely unknown. Here, we reported that knockdown of histone deacetylase 2 (HDAC2) specifically promoted the maturation of iPS cells. Further studies showed that HDAC2 knockdown significantly increased histone acetylation, facilitated TET1 binding an...

متن کامل

Regulation of histone deacetylase 2 by protein kinase CK2.

Histone deacetylase 2 (HDAC2) is a member of a large family of enzymes that alter gene expression by catalyzing the removal of acetyl groups from core histones. Originally isolated as a transcriptional co-repressor, HDAC2 possesses extensive amino acid sequence homology to HDAC1 (the founding member and most extensively studied HDAC enzyme). Because of this high degree of sequence similarity be...

متن کامل

Chronic valproate treatment enhances postischemic angiogenesis and promotes functional recovery in a rat model of ischemic stroke.

BACKGROUND AND PURPOSE Enhanced angiogenesis facilitates neurovascular remodeling processes and promotes brain functional recovery after stroke. Previous studies from our laboratory demonstrated that valproate (VPA), a histone deacetylase inhibitor, protects against experimental brain ischemia. The present study investigated whether VPA could enhance angiogenesis and promote long-term functiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017